

XPSL Language Definition: Working
Recommendation Document

PSIG 001/2006

Objective: To provide a common structured language for
configuration (inputs) and results (outputs) for pipeline
simulation applications.

Document Type: A Working Recommendation is a step
beyond a Draft Recommendation. The next step is to
incorporate comments on this document and prepare a
Proposed Recommendation. The Proposed Recommendation
is the last draft document. Following review and comments of
the Proposed Recommendation, a Candidate
Recommendation will be prepared and presented to the PSIG
membership for acceptance.

Recommendation Schedule: It is the intention of the PSIG
Data Standards Committee to present a Candidate
Recommendation to the PSIG membership for approval at the
2006 PSIG Conference

© Pipeline Simulation Interest Group, 2006.

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Contents

1 INTRODUCTION.. 4
1.1 XPSL GOAL.. 4
1.2 XPSL SCOPE ... 4
1.3 XPSL SCHEMA AND VALID XPSL INSTANCES.. 5

1.3.1 The XPSL Schema... 5
1.3.2 XPSL Instances... 6
1.3.3 Creating a single XPSL Instance from multiple XPSL Instances ... 6

1.4 XPSL APPLICATIONS .. 6
1.5 XPSL EXTENSIBILITY ... 6
1.6 REFERENCES ... 6

2 XPSL SCHEMA CONVENTIONS... 7
2.1 XPSL NAMESPACE ... 7
2.2 XPSL DESIGN PHILOSOPHY .. 7

2.2.1 Ramifications.. 7
2.3 NAMING CONVENTIONS .. 7

2.3.1 Naming Convention for Types and Groups .. 8
2.3.2 Naming Convention for Elements and Attributes ... 8
2.3.3 Naming Convention for Enumerations ... 8
2.3.4 Abbreviations.. 8
2.3.5 Name Length... 8

2.4 SCHEMA MODEL GROUPS ... 8
2.4.1 The xsd:all Model Group.. 8
2.4.2 The xsd:sequence Model Group ... 9
2.4.3 The xsd:choice Model Group ... 9

2.5 XPSL ELEMENT STRING CONTENT ... 9
2.6 PROVIDING FOR XPSL EXTENSIBILITY.. 9
2.7 GLOBAL VERSUS LOCAL TYPES... 10
2.8 UNQUALIFIED NAMES ALLOWED IN XPSL INSTANCES ... 10
2.9 NO CONSTRAINTS DEFINED IN XPSL SCHEMA ... 10
2.10 ELEMENTS SHOULD BE NILLIBLE.. 10
2.11 ELEMENTS HAVE NAME AND ID ATTRIBUTES .. 10
2.12 FORMATTING OF XPSL SCHEMA DOCUMENTS.. 11
2.13 VERSIONING OF XPSL SCHEMA DOCUMENTS... 11
2.14 DOCUMENTING XPSL SCHEMA DOCUMENTS ... 11
2.15 THE XPSL <SCHEMA> ELEMENT DECLARATION .. 11

3 SCHEMA DOCUMENTATION DIAGRAM SYMBOLS AND CONVENTIONS ... 11
3.1 OPTIONAL VERSUS REQUIRED ELEMENTS ... 11
3.2 XSD MODEL GROUPS ... 12

3.2.1 The xsd:all Group... 12
3.2.2 The xsd:choice Group... 12

3.3 ELEMENT GROUP DEFINITIONS ... 13
3.4 COMPLEX TYPE DEFINITIONS.. 13

4 XPSL DOCUMENTATION .. 14
4.1 THE XPSL ROOT ELEMENT ... 14
4.2 SPECIFYING SYSTEM OF UNITS, NAMES, EXTENSIONS AND COMMENTS ... 14

4.2.1 System of Units Overriding... 15
4.3 USING LIBREFERENCE ATTRIBUTE TO REFERENCE AN OBJECT IN A LIBRARY ... 15
4.4 XPSL CONFIGURATIONS... 15

4.4.1 The configuration Element’s node Element.. 16

2
4.4.2 Strongly Typed Data Values ... 18

© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.4.3 Inline Devices ... 19
4.4.4 End Devices.. 22
4.4.5 The settings Elements (settings, upSettings, and downSettings)... 22
4.4.6 The pipe Element .. 23

4.4.6.1 pipeMaterial Elements...23
4.4.6.2 thermalLayerSet ..24

4.4.7 The deviceSequence Device.. 25
4.5 THE OPTIONS ELEMENT... 26

4.5.1.1 equationOfState Element...27
4.5.1.2 pipeFrictionCalculation element..28

4.6 XPSL LIBRARIES .. 29
4.7 SYSTEMS OF UNITS ... 30
4.8 SNAPSHOTS AND SETTINGS SETS... 31

4.8.1 The time element... 32
4.8.2 The settingsSet element... 32

4.9 THE POINTDATASETTYPE AND THE SETTINGS ELEMENTS .. 33
4.9.1 The composition Element.. 34
4.9.2 The controlMode Element .. 35
4.9.3 The limitSets Element ... 36
4.9.4 The options Element ... 36
4.9.5 The orderedSets Element .. 37
4.9.6 The values Element... 38
4.9.7 The profiles Element... 39

3© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

XPSL Recommendation

1 Introduction
This document defines the XPSL language. XPSL is an acronym derived from “eXtensible Pipeline
Simulation Language”, a name which is very descriptive of the purpose of the language. XPSL has been
designed to be a common language for describing the inputs and outputs from pipeline simulation
applications.

XPSL is a language based on XML, the ubiquitous interface language of modern commerce and
applications. XML (eXtensible Markup Language) has become the de facto standard for data interfaces.
XPSL is XML and therefore benefits from a wide range of tools that are available for viewing, editing,
transforming, formatting, and documenting XML files.

1.1 XPSL Goal
The XPSL language provides a standard format for input and output data with the goal of accomplishing the
following:

• To provide users (e.g. pipeline companies) with a structured language for maintaining a description
of the physical pipeline assets. XPSL can be used as a “database” to maintain the detailed pipeline
configuration data.

• To provide simulation applications with a standard configuration format for describing the physical
pipeline configuration.

• To provide simulation applications with a standard format for specifying input variables such as fluid
properties, control settings, and setpoints. XPSL provides a mechanism for defining both static and
time varying inputs.

• To provide simulation applications with a standard format for outputting application results. XPSL
provides a mechanism for defining both static and time varying outputs.

• To define data units consistently so that the data in an XPSL file may be interpreted precisely in the
intended system(s) of units or converted to any other system of units.

• To provide precise definition of each XPSL data element so that any XPSL file has a precise
meaning, regardless of the user or application.

1.2 XPSL Scope
XPSL is intended to provide a comprehensive language for all inputs and outputs of pipeline simulation
applications. In its current (initial) version it primarily focuses on the following:

• Specification of the physical pipeline configuration.

• Specification of the variable pipeline data at a specific point in time. This set of data may include
values for physical quantities such as pressures and flows, control modes for pipeline equipment,
and limit settings (hi and low limits either for alarms or operational control). XPSL uses the term
“Snapshot” to refer to a set of pipeline data at a specific point in time.

• Specification of the most commonly used pipeline fluids.

• Specification of Systems of Units.

Currently, XPSL provides no direct vocabulary to define line fill or compressor or pump curves. However,
there are XPSL elements that may be used for those purposes. Also, currently, XPSL provides no
mechanism for defining the contents of binary files that are often useful for certain types of inputs and
outputs such as trends. The next release of XPSL will address these issues.

4© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

1.3 XPSL Schema and Valid XPSL Instances
This document will define the XPSL language in detail. An XPSL instance is an XML file that conforms to
the XPSL language rules and syntax. XML provides a schema definition language (called XML Schema)
that can be used to define the vocabulary of an XML application. XPSL is delivered with a schema referred
to as the XPSL Schema Definition that is defined using the XML Schema Language. The XPSL Schema
defines the element names as well as a great deal of the acceptable structure a valid XPSL instance (see
below). Conforming to the XPSL Schema is a necessary and sufficient condition to be a valid XPSL
instance.

A valid XPSL Instance is a collection of XML statements that conform to the XPSL Schema. Generally, an
XPSL Instance is defined in one or more xml files that together define a valid XPSL Instance. For simplicity,
we often refer to an XPSL Instance as an XPSL file. Users and applications create XPSL Instances. The
PSIG Data Standards Committee maintains XPSL Schema.

Note that multiple related or unrelated XPSL files may be used or generated by a single user or application.
For instance, the output may be one XPSL file and input may be a different XPSL file.

1.3.1 The XPSL Schema

An XPSL instance must satisfy all the constraints imposed by the XPSL schema. The XPSL schema
defines the element names and attributes that may be used in an XPSL instance. The XPSL schema is
defined using the W3C XML Schema language. The XPSL schema is defined in five files:

 XPSLMain_1_4.xsd

 XPSLElemTypes_1_4.xsd

 XPSLUnits_1_4.xsd

 XPSLValueTypes_1_4.xsd

 XPSLGlobals_1_4.xsd

The main schema file is XPSLMain_1_4.xsd. The other files are included through this file.

All XPSL elements are defined within an XPSL namespace that is named:

http://www.xpsl.org

This name resolves to a specific internet location. The individual XPSL schema files may be retrieved from
that location. Prefixes are used within xml files as a shorthand form to reference a specific namespace.
The recommend prefix for the XPSL namespace is xpsl.

Any xml file that include XPSL elements should reference the XPSL schema and define the xpsl prefix. The
following is an example of a minimal XPSL instance:

Figure 1 - Minimal XPSL File

<?xml version="1.0" encoding="UTF-8"?>
<xpsl:XPSL

xmlns:xpsl=http://www.xpsl.org
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://www.xpsl.org ../XPSLMain_1_4.xsd">

</xpsl:XPSL>

This first line declares that the file is an xml version 1.0 file. The second line declares an XPSL element.
The XPSL element is the root element of an XPSL instance and will be discussed further below. The
second line declares an xsi prefix that is part of the XML standard. The fourth line specifies where the
http://www.xpsl.org schema is located. In this case, the location (../XPSLMain_1_4.xsd) indicates that the
XPSLMain_1_4.xsd file that defines the schema is located in the current directory.

In this example, the XPSL instance consists of only a single root XPSL element.
5© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

1.3.2 XPSL Instances

Every XPSL instance consists of an XPSL element (defined in the next section) with zero or more child
elements. Every xml file has a single root (uppermost) element. The root element may be an XPSL
element as in Figure 1 or may be a child of another element as shown in the following example:

<PipelineData>
 <xpsl:XPSL> child elements </xpsl:XPSL>
</PipelineData>

In this example, the XPSL element is defined as a child of a PipelineData element.

There are no restriction on how many XPSL elements may occur in a single xml file. However, each XPSL
element and its children are considered to be a separate XPSL instance. In the following example, two
separate XPSL instances are defined as children of a <PipelineData> element.

<PipelineData>
 <xpsl:XPSL> child elements </xpsl:XPSL>
 <xpsl:XPSL> child elements </xpsl:XPSL>
</PipelineData>

1.3.3 Creating a single XPSL Instance from multiple XPSL Instances

Often, an application or user will need to combine multiple XPSL Instances into a single XPSL Instance. An
example might be the necessity of combining one XPSL instance containing pipeline configuration data with
another XPSL instance that contains the output from a simulation of that configuration. XML provides at
least two methods of combining multiple elements into a single element. One is the use of XSLT
stylesheets. The other is the recently released XInclude specification that allows one XML file to include
portions of other XML files. Using XInclude, one could create an XPSL element that is the combination of
the XPSL elements from several files.

Alternatively, an XPSL application may choose to consider all XPSL elements contained within a single XML
file as belonging to a single XPSL instance. However, this is not a requirement of XPSL.

1.4 XPSL Applications
An XPSL Application is an application that uses XPSL Instances for input and/or output. Applications may
impose certain constraints of their own on XPSL instances. For example, an application may require that an
input XPSL file contain pipeline elements that are properly interconnected. Also, an XPSL application may
allow for non-XPSL inputs or outputs as well.

However, an XPSL Application should not violate the XPSL Language Definition. The syntax of XPSL is
defined by the XPSL Schema. However, the use and meaning of the XPSL language elements is further
defined in the XPSL Language Definition. The XPSL Language Definition strives to define each of the
XPSL terms precisely. XPSL also defines how the language elements are intended to be used. These
definitions must be respected by XPSL applications in order for XPSL instances to be meaningful.

1.5 XPSL Extensibility
The PSIG Data Standards Committee recognizes that applications may require data that is not defined in
the XPSL syntax. XPSL explicitly provides for this through an extension mechanism. XPSL provides
“hooks” for XPSL extensions at every level of its language hierarchy.

1.6 References
XPSL (Extensible Pipeline Simulation Language) Plan: PSIG 001/2002

Common Language Standard: PSIG 001/2000

6© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

2 XPSL Schema Conventions
2.1 XPSL Namespace

• There is a single XPSL namespace

• Name : http://www.xpsl.org

• Resolves to a specific network location

• Individual schema files can be retrieved by users from this location

• Standard prefix is xpsl

• xmlns:xpsl=http://www.xpsl.org

• The XPSL Schema namespace is defined by several individual XPSL schema files that separately
define various aspects of the schema.

• The individual XPSL schema files are formally referred to as XPSL Schema Documents. These
files are authored and maintained by the PSIG XPSL Committee (currently PSIG Data Standards
Committee).

• Individual XPSL Schema documents are combined using the XSD include attribute.

• A master XPSL file named XPSL.xsd will be maintained that includes the latest version of all
individual XPSL files.

• The target namespace for every XPSL xsd file is http://www.xpsl.org

• Individual XSD files are named with the pattern XPSLname_v.xsd where v represents the version

• XPSLUnits_1_4.xsd

• XPSLConfig_1_4.xsd

• XPSLOutputs_1_4.xsd

• The version of each XPSL Schema Document will be stated in the <xsd:schema> element and will
be consistent with the schema document name.

2.2 XPSL Design Philosophy
• XPSL is intended to provide a common language for describing pipeline objects for applications

• XPSL is intended to ensure common usage and information sharing.

• XPSL is not intended to ensure that the objects described in an XPSL instance file are complete or
valid from a simulation perspective

2.2.1 Ramifications

• Except in special circumstances, XPSL will make all inputs optional

• Devices will not need to be connected to other devices

• All elements and attributes are optional

• The minOccurs=“0” attribute should be defined wherever possible

2.3 Naming Conventions
• Consistent names are easier to understand, remember, and maintain

• Guidelines apply to XPSL schema – not to user defined objects

7© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

2.3.1 Naming Convention for Types and Groups

• Use Mixed Case (first letter of each word capitalized with no underscores or hyphens between
words)

• Type names will have “Type” as a suffix

• Group names will have “Group” as a suffix
Examples:

• NodeType

• InlineDeviceType

• NodeGroup

Mixed case will be used for

• Simple Types

• Complex Types

• Attribute and Element Groups

2.3.2 Naming Convention for Elements and Attributes

Use camel case (first letter of each word except the first capitalized with no underscores or hyphens
between words).

Examples:

• node

• inlineDevice

2.3.3 Naming Convention for Enumerations

Use mixed case (first letter of each word capitalized with no underscores or hyphens between words).
Examples :

• DifferentialPressure

• APIGravity

2.3.4 Abbreviations

The use of abbreviations in names is discouraged. Any abbreviations that are used should be standard and
also documented in the XPSL documentation in a list of standard abbreviations.

2.3.5 Name Length

XPSL names that are longer than 20 characters are discouraged. The shortest descriptive name should be
used. However, clarity will be valued above brevity.

2.4 Schema Model Groups
XSD provides three types of “collection” definitions, xsd:all, xsd:sequence, and xsd:choice. The XPSL
preferred type is “xsd:all”.

2.4.1 The xsd:all Model Group

This is the preferred XPSL model group.
Example:

<xsd:complexType name=“PipeType”>
<xsd:all minOccurs=“0”>
 <xsd:element name=“OD” type=“xsd:double” minOccurs=“0”>

8© PSIG

 <xsd:element name=“WT” type=“xsd:double” minOccurs=“0”>

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

</xsd:all>
</xsd:complexType>

Advantages

• Not dependent on order

• With minOccurs set to 0, allows 0 or 1 (only) of each of the elements to be defined.

Disadvantages

• Cannot allow the declaration of more than one element of a specific name.

2.4.2 The xsd:sequence Model Group

Use only when element order is both natural and expected

It may also be used when the user may specify more than one element of the same name.

Example

 <xsd:complexType name=“NodeSetType”>
 <xsd:sequence>
 <xsd:element name=“upNode” type=“xsd:token”>
 <xsd:element name=“downNode” type=“xsd:token”>
 </xsd:sequence>
 </xsd:complexType>

2.4.3 The xsd:choice Model Group

• The xsd:choice model group is used to specify a choice between several options.

• When using xsd:choice with maxOccurs > 1, make sure that xsd:all or xsd:sequence is not more
appropriate.

2.5 XPSL Element String Content
XSD provides three string types: xsd:string, xsd:normalizedString and xsd:token. XPSL will always use
xsd:token as the string type for any string attributes and elements xsd:token does the following string
conversions

• Truncates all leading and trailing whitespace

• Collapses all other contiguous white space (tabs, spaces, CR’s and LF’s to a single space)

2.6 Providing for XPSL Extensibility
Extensibility will be granted through a a global XPSL type called ExtensionType defined as follows:

<xs:complexType name="ExtensionType" final=””>
 <xs:sequence minOccurs="0">
 <xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Attribute extension is not directly allowed. However, user defined types may that are added to an
ExtensionType object may have any number of attributes.

The ExtensionType is defined with the following attributes :

• processContents=“lax” informs the schema processor to validate any contents for which it can find a
declaration. If a declaration is not found, no errors will be reported. This allows users to create
extensions without forcing them to define a schema for the extensions.

9© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

• final=“” allows users to derive types from by extension or restriction from the base
xpsl:ExtensionType.

An XPSL:ExtensionType element should be defined at every level of a schema document, starting at the
root level (below <xsd:schema>). Every XPSL object should allow extension.

Each ExtensionType element should be declared with the attributes minOccurs=“0” and
maxOccurs=“unbounded”.

The XPSL:ExtensionType element will be defined in an XPSLGlobals.xsd Schema Document along with the
definition of XPSL units. Every other XPSL schema document must include the XPSLGlobals.xsd
document.

2.7 Global versus Local Types
Global types are preferred when a type declaration is expected to be used more than once. Local types are
preferred otherwise.

2.8 Unqualified Names Allowed in XPSL Instances
Unqualified element and attribute names will be allowed (elementFormDefault=”unqualified”
attributeFormDefault=“unqualified” />). In other words, it will not be necessary for users to include the xpsl:
prefix on each XPSL element or attribute.

2.9 No Constraints Defined in XPSL Schema
XSD provides the capability of defining constraints similar to primary / foreign key constraints in databases.
For example, nodes referenced by devices could be constrained to exist in as children of a <Nodes>
element.

However, XPSL will not include constraints in its schema. Imposing of constraints and checking for
consistency between XPSL elements will be left to the application writers.

2.10 Elements Should Be Nillible
Generally, every XPSL element will be allowed to be take the value of “nil” by using the xsd:nillible=“true”
attribute setting in the type declaration.

This allows one to use elements in XPSL instance files without defining their values. One use of this is to
specifically indicate that data is not available for an elements value.

Example :

 <xpsl:Pipe>
 <Diameter xsi:nil=“true”/>
 </xpsl:Pipe>

Note: using xsi:nil requires the use of the XSD Schema-instance namespace.

2.11 Elements Have Name and ID Attributes
Each XPSL element will defined to have name and id string attributes. Therefore, any element in a user’s
XPSL instance document may have a name. Element names are used to cross-reference XPSL objects
and form an important part of an XPSL instance. The ID attribute is provided as an additional element
identifier. XPSL does not use this identifier directly though XPSL applications may chose to use it.

These attributes are defined in a BaseAttGroup attribute group that is included in the definition of all XPSL
types. The group is defined as follows:

<xs:attributeGroup name="BaseAttGroup">
 <xs:attribute name="name" type="xs:token" use="optional"/>
 <xs:attribute name="id" type="xs:token" use="optional"/>
</xs:attributeGroup>

10© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

2.12 Formatting of XPSL Schema Documents
The XPSL Schema Documents will be formatted to allow one to easily read the document in a text editor.

Spaces will be used for indentation.

Tabs will never be used

Indenting will be used to clearly show document structure. Three (3) spaces will be used for each new level
of indentation.

When declarations are continued on subsequent lines, all continuation lines will be indented by the same
amount and will be indented greater than the amount of the original declaration.

No line in an XPSL Schema Document will be longer than 100 characters.

2.13 Versioning of XPSL Schema Documents
The <schema version=“version” attribute will be used to indicate the version of an XPSL schema document.

The name of the schema document will also include the version number.

When a new version of an XPSL schema document is created, the new version will be a complete
restatement of that portion of the schema (e.g. units). In other words, it will not import or redefine earlier
versions of the document.

Every attempt will be made to make new versions of a schema document backwards compatible with earlier
versions. An instance document that validates against an earlier version of the schema should validate
against more recent versions.

2.14 Documenting XPSL Schema Documents
Each version of the XPSL Schema will be accompanied by documentation that describes that XPSL
Schema.

Documentation should include the following:

• The intended purpose of the schema document.

• A description of all XPSL objects defined in the schema document including a description of each
element and content (attributes and child elements)

• A list of all abbreviations used in the schema type names

• Examples of use of the schema

2.15 The XPSL <schema> Element Declaration
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xpsl="http://www.xpsl.org" xmlns=http://www.xpsl.org
 targetNamespace="http://www.xpsl.org" elementFormDefault="unqualified"
 attributeFormDefault="unqualified" version="1.0">

3 Schema Documentation Diagram Symbols and Conventions
The XPSL schema documentation in the following sections makes use of diagrams generated using the
Altova XMLSpy Enterprise Suite. A number of graphical symbols and conventions are used in the
diagrams. This section describes these symbols and conventions.

3.1 Optional versus Required Elements
Generally, any element, attribute, or group of elements or attributes may be defined in a schema as optional
or required. The convention for representing optional components is to use a dashed boundary for the
components diagrammatical representation. The convention for representing required components is to use

11© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

a solid boundary. In the preceding figure, XPSL is a required element and configurations is an optional
element.

3.2 XSD Model Groups

3.2.1 The xsd:all Group

Three types of groupings are allowed in XSD schemas. All three of these are used in XPSL.The first, and
most commonly used in XPSL, is the xsd:all group. This group is represented by the symbol

Figure 2 - xsd:all Symbol

 or
If the symbol has a dashed border, the schema has been defined so that this group is optional rather than
required. A solid border indicates that this group of elements is not optional.
The xsd:all group is followed by a list of child elements, ALL of which are allowed no more than one time. The
schema writers may define whether or not the child elements are optional. Referring to figure 2, one can see
that the XPSL element has the following optional child elements: configurations, libraries, snapshots, extension,
and comment.
The xsd:sequence Group
A sequence group of element declarations is used to indicate a set of elements that must appear in a certain
order. Unlike the all group, the sequence group allows more than one copy of each element to be included.
Generally XPSL avoids defining the order in which element should occur. Instead, XPSL uses the sequence
group to define an element that may occur any number of times.

Figure 3 - xsd:sequence Symbol

Figure 3 shows the symbol used to specify the sequence group. This figure also illustrates how the limits on
the number of elements that can be included are denoted. The 0..infinity symbol indicates that any number
of elements (0 to infinity) are allowed.

Figure 4 - xsd:sequence Example

Figure 4 illustrates the use of the sequence group in the XPSL schema. The sequence group is used to
define that the configurations element can include is zero or more configuration child elements.

3.2.2 The xsd:choice Group

A choice group of element declarations is used indicate that only one of the child elements may appear. A
common use for choice groups is to allow any number of children to appear in any order. This can be
accomplished by allowing the choice group to be repeated any number of times. XPSL uses choice groups
precisely for this purpose in its definition of the configuration element type.

Figure 5 - xsd:choice Symbol

12© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Figure 5 shows the symbol used for the choice group. Figure 6 shows how a choice group is used to define
a device sequence that consists of any number and sequence of location, InlineDevices, EndDevices,
extension and comment elements.

Figure 6 - xsd:choice Example

3.3 Element Group Definitions
For convenience and defining a schema, an element group may be defined. This is particularly useful when
one wishes to define a group of elements that may be used in different places in the schema. An element
group is different from the sequence, all, and choice model groups that are used to define the order and
number of child elements that may appear at a particular point in the schema.

Figure 6 above illustrates the use of two element groups named InlineDevicesGroup and EndDevicesGroup.
Expanding the EndDevicesGroup, as in Figure 7, one can see that this group consists of a choice of two
elements: external regulator or tank. In this particular example, the element group is optional. Therefore it
was not necessary to make its child elements optional.

Figure 7 - Element Group Example

3.4 Complex Type Definitions
Generally speaking, any complex element in XPSL that are used more than once are defined as a complex
type. A complex type defines an element, its child elements, and its attributes.

Figure 6 illustrates the definition of the DeviceSequenceType. An element of this complex type allows any
number of children of the location type, extension type, comment type, or any of the elements defined in the
InlineDevicesGroup and the EndDevicesGroup.

13© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4 XPSL Documentation
4.1 The XPSL Root element

Each XPSL instance consists of an XPSL element and its children. The XPSL element and its child
elements are shown diagrammatically in Figure 9. Its attributes are shown in Figure 8.

Figure 8 – The XPSL Root Element’s Attributes

Figure 9 – The XPSL Root Element’s Children

4.2 Specifying System of Units, Names, Extensions and Comments
Figure 8 shows the standard attributes that are defined for virtually every element in the XPSL language.
The name attributes allows one to name an element. Some elements, such as those in libraries have no
purpose unless they are named. It is not an XPSL error to specify duplicate names for the elements of the
same type (e.g. two different block valves with the same name).

The id attribute is provided for additional element identification. XPSL does not use this attribute internally
for element crossreferencing. It uses the name for that purpose.

The systemOfUnits attribute is used to specify a systemOfUnits. Generally, this should correspond to a
systemOfUnits element already defined in a systemOfUnitsLibrary (discussed later). However, it is possible

14© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

that application writers may build in to their applications some predefined systems of units that may be
specified by name without a separate specification in the systemOfUnitsLibrary.

At virtually every level of the XPSL hierarchy, extension and comment elements may be specified. The
extension element is defined to allow any child attributes. When XPSL needs to be extended to meet
specific user requirements that are not already met by XPSL, the extension element is the proper place to
add the extension. Each extension element may have any number of child elements.

Users and application writers are urged to standardize their extensions and to provide their extensions to
the XPSL Data Committee for incorporation into XPSL.

Comment elements may be used to insert comments at most levels of the XPSL hierarchy.

Figure 10 – Simple XPSL Instance with Comment and Extension Elements
 <XPSL name=“My Simulation” systemOfUnits=“English”>
 <extension>
 <VendorSpecial>anything goes here
 </VendorSpecial>
 </extension>
 <comment>My first XPSL!</comment>
 </XPSL>

4.2.1 System of Units Overriding

XPSL allows one to specify the SystemOfUnits attribute in most elements in its hierarchy. This means that
a SystemOfUnits specification may be entered at a high level (even in the XPSL root element) and then a
several lower levels. The convention for resolving SystemOfUnits conflicts is as follows:

An XPSL application attempts to apply the SystemOfUnits specification to the element defining the
SystemOfUnits and all element below that element. When a lower level element is found with a
SystemOfUnits specification, the new specification applies to all elements below that level.

4.3 Using libReference Attribute to Reference an object in a Library
XPSL provides the ability to archive configuration data in XPSL libraries. Any element already defined in an
XPSL library may be referenced when defining a new element. Figure 11 shows the libReference attribute
defined for the configuration element. Therefore, when defining a configuration, one my include a reference
to a predefined configuration already stored in the XPSL configurationLibrary discussed later.

The following guidelines are provided for the use of the libReference element:

1. The libReference attribute is accepted at almost all levels of a configuration definition

2. libReference is followed by the name of an object in the corresponding library

3. Library references may be nested to any level. An object in a library may reference another object in
the library and so on

4. Any subset of an element’s content may be defined in a library element

5. When a libReference is used, the element’s contents are initialized to referenced element contents.
Any local element content is then processes, added to or overriding the content imported from the
library element.

These guidelines are part of the XPSL specification. XPSL applications should implement the libReference
functionality as specified above.

4.4 XPSL Configurations
The XPSL configurations element is provided to allow one to specify one or more detailed pipeline
configurations. The configurations element can have zero or more configuration child elements as shown in
Figure 11. Each configuration child element allows up to six attributes. Four have been discussed earlier.

15© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

This element also includes a version attribute that is provided for the convenience of a user to identify the
version of a configuration.

Figure 11 - configuration Element Attributes

Figure 12 shows a high level view of the configuration element. This element may contain an unbounded
number of child elements.

Figure 12 - configuration Element’s Child Elements – High Level View

4.4.1 The configuration Element’s node Element

The node element is used to specify points of connection between devices in a pipeline configuration. The
node element has the typical set of attributes (name, id, systemOfUnits, and libReference) as well as a set

16© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

of child elements that provide more detailed information about the node. Most commonly used are the
milePost and elevation elements.

The xCoordinate and yCoordinate are used for applications which need to store graphical information about
the location of the node in a graphical representation of a pipeline network.

Figure 13 - node Element

17

A sample node element in XPSL is shown below:

<node name=“Timbuktu”>
 <milepost>7005.735</milepost>
 <elevation>2783.35</elevation>
</node>

© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.4.2 Strongly Typed Data Values

Note that the elevation and milePost elements are of types ElevationValueType and MilepostValueType.
Virtually numerical scalar data value in XPSL is assigned a specific Value Data Type. The Value Data Type
(e.g. MilepostValueType) specifies the type of unit conversion that is applied to values of that data type.
Also, every data element has child elements that may be used to specify the data quality, data source, and
error (uncertainty) associated with that data element.

Figure 14 shows an example of this concept using the elevation element. The label attribute is provided to
specify a units label for the data value. In general, this is most useful in output files. The label should be
ignored by applications reading in a configuration. It is not possible to specify the units of the data value
using the label attribute. The systemOfUnits attribute should be used for that purpose.

The dataQuality element is an enumerated element that allows only the following character content:

Known

or

Unknown.

The source element is used to document the source of the data: It is an enumerated element that allows
only the following content:

Scada

ManualEntry

Simulation

An example of the use of these elements in the XPSL node element is shown below:

<node name=“Timbuktu”>
 <milepost>7005.735</milepost>
 <elevation>2783.35
 <dataQuality>Known</dataQuality>
 <source>Scada</Source>
 </elevation>
</node>

18© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Figure 14 - Example Value Data Type: ElevationValueType

4.4.3 Inline Devices

The configuration element may include an unbounded number of Inline Devices in any order. Figure 15
shows the possible inline device elements.

Figure 16 shows the attributes of the inline devices. The figure shows the blockValve device. However, all
inline devices have this minimum set of attributes. Pipes have two additional attributes.

A simple (but incomplete) configuration with a block valve element is shown below:

<configuration>
 <blockValve name=“StopFlow” upNode=”up” downNode=”down”/>
</configuration>

Figure 17 and Figure 18 show the child elements for the blockValve and compressor elements. The key
difference is that the blockValve has a single PointDataSetType element, settings, element while the
compressor has three elements of that type: upSettings, settings, and downSettings.

The PointDataSetType defines the content of these settings elements (attributes and elements). The
PointDataSetType will be discussed in a later section. However, for now, accept the fact that this data type
is an all-encompassing data type including:

1. A wide range of data values

2. Sets of device limits

3. Control mode specification

4. Ordered data sets suitable for defining compressor maps

5. and more…

19© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Figure 15 - Inline Devices

20© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Figure 16 - Inline Device Attributes – blockValve Example

Figure 17 - blockValve's Child Elements

21© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Figure 18 - compressor's Child Elements

4.4.4 End Devices

The configuration element may include an unbounded number of End Devices in any order. Figure 19
shows the possible end device elements. The primary difference between end devices and inline devices is
that end devices have a single node reference, rather than an upNode and downNode.

Figure 19 - End Devices

4.4.5 The settings Elements (settings, upSettings, and downSettings)

Figure 17 and Figure 18 show the child elements for the blockValve and compressor elements. The key
difference is that the blockValve has a single PointDataSetType element, settings, element while the
compressor has three elements of that type: upSettings, settings, and downSettings.

The PointDataSetType defines the content of these settings elements (attributes and elements). The
PointDataSetType will be discussed in a later section. However, for now, accept the fact that this data type
is an all-encompassing data type including:

1. A wide range of data values

2. Sets of device limits

3. Control mode specification

4. Ordered data sets suitable for defining compressor maps

5. and more…

Devices with a single settings element are the following:

a. Block Valve

b. Check Valve

c. Flow Meter

d. Tank

e. External Regulator

f. Pipe
22© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Dev e settings elements (settings, upSettings, and downSettings) are the following: ices with thre

a. Compressor

b. Pump

c. Inline Regulator

d. Cooler

e. Heater

4.4.6 The pipe Element

Detailed configuration data is provided for pipe elements. The pipe element has two more attributes than
the other inline devices: pipeLoops and pipeEndsConstrained. pipeLoops=”x” specifies that the pipeline
being defined is actually two identical pipes in parallel. pipeEndsConstrained=”false” specifies that the pipe
ends are not constrained. The default assumes that pipeLoops=”1” and pipeEndConstrained=”true”.

The pipe element also has specialized child elements as shown in the following figure:

Note that pipes have downLocation and upLocation elements. These elements may be used to specify
elevation, milePost, and other properties of the pipe ends that are different from the upNode and
downNodes specified for the pipe. In this case, while the upNode and downNode attributes define network
interconnectivity, any elements or attributes defined in the pipe’s upLocation and downLocation elements
override those defined for the nodes referenced by upNode and downNode attributes.

23

4.4.6.1 pipeMaterial Elements

Pipes have pipeMaterial elements that have child elements that define the pipe material properties. There is
a pipeMaterialLibrary in the library element that may be referenced using the pipeMaterial’s libReference
attribute. Generally this is much more efficient than defining the pipeMaterial properties in each pipe
element.

© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.4.6.2 thermalLayerSet

To define the thermal properties of the pipe surroundings, one may define a thermalLayerSet for each pipe.
The thermalLayerSet consists of one or more thermalLayers as shown in the following figure.

24© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Each thermalLayer has a thickness and a thermalMaterial and a heatTransferCoeff for some types of
thermal models as shown in the following figure:

The thermalMaterial element is shown in the following figure:

There is a thermalMaterialLibrary and thermalLayerSetLibrary in the libraries element. Preconfigured library
elements may be used instead of specifying this detail with every pipe.

4.4.7 The deviceSequence Device

The deviceSequence element may be used to specify a set of pipeline devices (e.g. pipes, block valves and
tanks) that are connected end-to-end. These may be interspersed with location elements. location
elements, when used, specify the milepost and elevation of the device immediately following the location
element in the deviceSequence.

25© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.5 The options Element
The options element is a child of the XPSL root element.

The options element has two child element of interest: equationOfState and pipeFrictionCalculation as
shown in the following figure:

26© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.5.1.1 equationOfState Element

The equationOfState element may have a single child element selected from its possible child elements
shown in the figure below. The presence of the child element specifies the equation of state to be used.
For instance, to specify the AGA 8 Detail equation of state, one would enter the following into the options
element:

<equationOfState>
 <aga8Detail/>
</equationOfState>

27© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.5.1.2 pipeFrictionCalculation element

The pipeFrictionCalculation element defines the type of equation used to calculate frictional head loss in
pipes. The possible choices are shown in the figure below. To specify the Darcy Weisbach calculation, one
would include the following elements in the options element:

<pipeFrictionCalculation>
 <darcyWeisbach/>
</pipeFrictionCalculation >

28© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.6 XPSL Libraries
The XPSL root element contains a libraries element. The XPSL libraries may be entered below this
element. Each device type has its own library.

29© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

The typical library structure is shown in the following figure:

In this example, the blockValveLibrary consists of an unbounded number of blockValve elements (with there
associate attributes and child elements).

Library elements are referenced using the libReference attribute. Every element that can reference a
preconfigured library element has this attribute. The libReference is followed by the name of an object in
the corresponding library (e.g. libReference=”blockValve1”).

Library objects may also reference other library objects of the same time. Library references may be nested
to any level.

An element in a library may define the complete element content or any subset of an element’s content.

When a libReference is used, the element’s contents are initialized to the referenced element’s contents.
Any local element content is then processed, added to or overriding the content imported from the library
element.

There are two special libraries: systemOfUnitsLibrary and settingsSetLibrary. These are described in their
own sections.

4.7 Systems of Units
• A System Of Units has a name

• Any number of Systems of Units may be defined

• Systems of Units are defined using a systemOfUnits element in the systemOfUnitsLibrary.

30© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Unit conversions are defined in terms of a multiplier of the corresponding SI unit plus an offset in user units.
An example of a systemOfUnits element defining only two conversions, area and length, is shown below:

<systemOfUnits name="English">
 <xpsl:area label="ft^2">
 <xpsl:linearConversion siMultiplier="0.09290304“
 userOffset="0.0"/>
 </xpsl:area>
 <xpsl:length label="ft">
 <xpsl:linearConversion siMultiplier="0.3048“
 userOffset="0.0“/>
 </xpsl:length>
</systemOfUnits>

Any or all of the following units conversions may be defined:

angularVelocity apiGravity area barometricPressure bulkModulus chamberVolume draConcentration
cost costPerMass costPerTime costPerVolume days density diameter differentialPressure
differentialTemperature dynamicViscosity elapsedTime elevation gasCompressibilityFactorZ energy
energyFlow efficiency fluidLevel flow fraction head headGradient heatingValue heatingValuePerMass
heatTransferCoefficient heatRate hours hydraulicResistance inverseTemperature isentropicEfficiency
kinematicViscosity length linePack longTime mass massFlow massPackRate massPackRatePerLength
mediumDistance milepost minutes molecularWeight moleFraction moles nondimensionalFlow
nondimensionalHead packRate packRatePerLength pipeLength power pressure rateOfRotation ratio
pipeRoughness seconds specificEnthalpy specificGravity specificHeatCapacityPerMass
specificHeatCapacityPerMole temperature tensileStrength thermalConductivity thermalEfficiency
thermalExpansionCoefficient thermalFlow thermalFlowPerLength thermalFlowPerVolume thickness
torque unity valveCv valveCg valveTransitTime velocity volume volumetricEfficiency

4.8 Snapshots and Settings Sets
• A Snapshot is time stamped

• A Snapshot represents the state of the pipeline application at some point in time

• The settingsSet element contains the pipeline state at a point in time

The snapshot element is shown in the figure below. The snapshots element contains an unbounded
number of snapshots, each for a specified point it time.

Snapshots may be used both as inputs and outputs from a pipeline simulation application.

31© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.8.1 The time element

The time element is used to specify the snapshot time. The actualTimeAndData element specifies the clock
time that the snapshot corresponds to. Generally, this is most useful for output snapshots.

The modelTimeAndData stores the simulation time and date.

The relativeTime allows one to specify the time relative to the start of a simulation.

4.8.2 The settingsSet element

A Settings Set is basically a collection of one or more pointSettings elements. The pointSettings element is
a set of data for a specific pipeline location, device, or device end. A settingsSet may be used to represent
the complete state of a pipeline at some point in time. It may also be used to represent any subset of the
pipeline’s state.

Each pointSettings element represents the state of a single pipeline device or device end.

The pointSettings element is of type PointDataSetType. This is the same type that was used for the device
settings, upSettings, and downSettings elements as shown in the following figure:

32© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

33

The PointDataSetType is described in the following section.

4.9 The PointDataSetType and the Settings Elements
The PointDataSetType is used as an all-encompassing representation of the data at a specific point in a
pipeline configuration.

In a device configuration, it is the type of the following elements

• settings element

• upSettings element

• downSettings element

In settingsSets, it is the type of the following element

• pointSettings element

Elements of the PointDataSetType have attributes as shown in the following figure. Of most interest are the
deviceName, deviceType, and deviceEnd attributes. These are used to specify which device (and device
end where applicable) the data is associated with.

© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

Elements of the PointDataSetType have child elements as shown in the following figure:

4.9.1 The composition Element

The composition Element is used to specify a fluid composition. It has the following child elements:

a. methaneMF

b. ethaneMF

c. propaneMF

d. iButaneMF

e. nButaneMF

f. iPentaneMF

g. nPentaneMF

h. nHexaneMF

i. nHeptaneMF

j. nOctaneMF

k. nNonaneMF

l. nDecaneMF

m. argonMF

n. carbonDioxideMF

o. carbonMonoxideMF

p. heliumMF

34© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

q. hydrogenMF

r. hydrogenSulfideMF

s. nitrogenMF

t. oxygenMF

u. waterMF

An example composition element is:

<composition>
 <methaneMF>95.0</methaneMF>
 <ethaneMF>5.0</ethaneMF>
</composition>

4.9.2 The controlMode Element

The controlMode element is used to specify the mode being used to control a device. Its content is one or
more of its child elements with no further detail. The presence of a child element specifies that that mode is
controlling the device:

The controlMode element may have any of the following child elements defined with empty content:

a. compressionRatio

b. downPressure

c. downTemperature

d. energyFlow

e. exhaustGasTemperature

f. flow

g. heatRate

h. massFlow

i. openFraction

j. power

k. pressure

l. speed

m. temperature

n. thermalFlow

o. upPressure

p. upTemperature

The following example would specify flow control:

<controlMode><flow/></controlMode>

35© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.9.3 The limitSets Element

The limitSets element is a collection of up to six limits elements. Each limits element defines one type of
limit. The type of limit being defined is specified using the limitType attribute of the limits element. The
limitType attribute is an enumeration with the following possible values:

• Maximum

• Minimum

• HIHI

• HI

• LO

• LOLO

Each limits element consists of a set of data associate with that limitSet type. At most, only one limits
element should be defined for each limitsType value. The limits element has the child elements shown in
the following figure:

4.9.4 The options Element

The options element may be specified for a device. This element overrides the value of the options element
specified for the XPSL instance as a whole. The options element is identical in content to the options
element previously described in section 4.5.

36© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.9.5 The orderedSets Element

The orderedSets Element provides for an unbounded number of child orderedSet elements.

Each orderedSet element allows an unbounded number of child n-tuple elements where n is less than or
equal to six. The orderedSet is may be used to define compressor and pump maps. These elements are
illustrated in the following figure:

37© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.9.6 The values Element

The values Element is an all-encompassing scalar numeric data type element. The goal was to define all
possible pipeline numeric data values as specific child elements of this values Element. A small portion of
this element’s content is shown in the following figure:

The complete list of child elements follows:

actualDensity actualFlow actualSpecificGravity actualVolume ambientTemperature angularVelocity
apiGravity barometricPressure clearanceVolume closedValveCg closedValveCv closingTransitTime
cost compressionRatio costPerTime costPerVolume crossectionalArea density dewPointTemperature
differentialPressure differentialTemperature displacementVolume distanceStep draConcentration
dynamicViscosity elevation efficiency exhaustTemperature flow fluidBulkModulus
fluidCoefficientOfThermalExpansion fluidLevel frictionFactor head headGradient heatingValue
heatingValuePerMass heatTransferCoefficient heatRate internalDiameter isentropicEfficiency
kinematicViscosity length linePack loadStep mass massFlow massPackRate massPackRatePerLength
milepost molecularWeight netPositiveSuctionHeadRequired openingTransitTime openValveCg
openValveCv outsideDiameter packRate packRatePerLength pipeRoughness power pressure
pressurePack relativeHumidity relativeRoughness reynoldsNumber sedimentAndWaterContent
shaftPower specificEnthalpy specificGravity specificHeatCapacity specificHeatCapacityPerMole
slackVolume standardPressure standardTemperature temperature temperaturePack tensileStrength
thermalConductivity thermalEfficiency thermalExpansionCoefficient thermalFlow thermalFlowPerLength
thermalFlowPerVolume timeStep torque valveCg valveCv valveOpenFraction vaporPressure velocity
volume volumeCorrectionFactor volumetricEfficiency wallThickness waterContent

38© PSIG

PSIG 001/2006 XPSL Language Definition: Working Recommendation Document

4.9.7 The profiles Element

The profiles element is used to specify an input or output profile. A profile is defined as a milePost array
and a set of values associated with each milePost. The profile element content is shown in the following
figure:

39

Since the values element has a child element milePost as well as every other XPSL numeric data value, the
profile may include a wide range of data values at each milepost.

© PSIG

	1 Introduction
	1.1 XPSL Goal
	1.2 XPSL Scope
	1.3 XPSL Schema and Valid XPSL Instances
	1.3.1 The XPSL Schema
	1.3.2 XPSL Instances
	1.3.3 Creating a single XPSL Instance from multiple XPSL Instances

	1.4 XPSL Applications
	1.5 XPSL Extensibility
	1.6 References
	2 XPSL Schema Conventions
	2.1 XPSL Namespace
	2.2 XPSL Design Philosophy
	2.2.1 Ramifications

	2.3 Naming Conventions
	2.3.1 Naming Convention for Types and Groups
	2.3.2 Naming Convention for Elements and Attributes
	2.3.3 Naming Convention for Enumerations
	2.3.4 Abbreviations
	2.3.5 Name Length

	2.4 Schema Model Groups
	2.4.1 The xsd:all Model Group
	2.4.2 The xsd:sequence Model Group
	2.4.3 The xsd:choice Model Group

	2.5 XPSL Element String Content
	2.6 Providing for XPSL Extensibility
	2.7 Global versus Local Types
	2.8 Unqualified Names Allowed in XPSL Instances
	2.9 No Constraints Defined in XPSL Schema
	2.10 Elements Should Be Nillible
	2.11 Elements Have Name and ID Attributes
	2.12 Formatting of XPSL Schema Documents
	2.13 Versioning of XPSL Schema Documents
	2.14 Documenting XPSL Schema Documents
	2.15 The XPSL <schema> Element Declaration

	3 Schema Documentation Diagram Symbols and Conventions
	3.1 Optional versus Required Elements
	3.2 XSD Model Groups
	3.2.1 The xsd:all Group
	3.2.2 The xsd:choice Group

	3.3 Element Group Definitions
	3.4 Complex Type Definitions

	4 XPSL Documentation
	4.1 The XPSL Root element
	4.2 Specifying System of Units, Names, Extensions and Comments
	4.2.1 System of Units Overriding

	4.3 Using libReference Attribute to Reference an object in a Library
	4.4 XPSL Configurations
	4.4.1 The configuration Element’s node Element
	4.4.2 Strongly Typed Data Values
	4.4.3 Inline Devices
	4.4.4 End Devices
	4.4.5 The settings Elements (settings, upSettings, and downSettings)
	4.4.6 The pipe Element
	4.4.6.1 pipeMaterial Elements
	4.4.6.2 thermalLayerSet

	4.4.7 The deviceSequence Device

	4.5 The options Element
	4.5.1.1 equationOfState Element
	4.5.1.2 pipeFrictionCalculation element

	4.6 XPSL Libraries
	4.7 Systems of Units
	4.8 Snapshots and Settings Sets
	4.8.1 The time element
	4.8.2 The settingsSet element

	4.9 The PointDataSetType and the Settings Elements
	4.9.1 The composition Element
	4.9.2 The controlMode Element
	4.9.3 The limitSets Element
	4.9.4 The options Element
	4.9.5 The orderedSets Element
	4.9.6 The values Element
	4.9.7 The profiles Element

